IEEE Fellow Activities and Industry Engagement
 d -

D. Tan, Ph.D., IEEE Fellow

President, IEEE Transportation Electrification Council, 2024-
Chair, IEEE Fellow Committee, IEEE Board of Directors, 2022-2023
Division II Director, IEEE Board of Directors, 2017-2018
Editor-in-Chief (Founding), IEEE JESTPE, 2013-2018
President, IEEE Power Electronics Society, 2013-2014
Chair, IEEE/Google Little Box Challenge (\$1M Awarded), 2014-2015
Chair, IEEE std 1515 \& 1573 Working Groups, 1997-2004
Chair, IEEE PELS LAC Chapter, 1995-1999
Mar. 1, 2024

Outline

- Recent fellow stats
- The new contribution characterization matrix
- Advanced glimpse of the sample nom form write-ups
- Importance of increasing the nomination pool size
- Nomination committees
- Synergy with senior member drive

New FC Structure

- The BoD approved the new structure for the Fellow Committee Nov., 2023

2023 and 2024 Stats

- Class of 2023 \& Class of 2024*

[^0]
Class of 2024 Stats

- By Employment Affiliation*

	NOMINATIONS RECEIVED					NOMINATIONS ELEVATED				
Class of	Education	Government	Industry	Other	Total	Education	Government	Industry	Other	Total
1999	303	28	207	26	564	132	13	83	11	239
2000	297	11	206	17	531	133	7	103	5	248
2001	277	28	209	11	525	139	13	98	6	256
2002	327	38	171	25	561	143	14	91	11	259
2003	406	45	166	12	629	165	14	76	5	260
2004	432	45	179	19	675	150	22	82	6	260
2005	496	60	200	22	778	176	23	58	11	268
2006	501	60	194	30	785	173	17	69	12	271
2007	526	65	166	8	765	167	27	71	3	268
2008	501	51	204	17	773	188	17	84	6	295
2009	512	48	182	15	757	204	15	78	5	302
2010	542	43	187	25	797	206	17	72	14	309
2011	553	55	188	17	813	211	18	85	7	321
2012	568	55	164	12	799	234	19	71	5	329
2013	566	65	182	18	831	191	24	77	5	297
2014	589	54	193	16	852	192	23	67	11	293
2015	619	52	190	13	874	211	21	65	3	300
2016	592	55	172	14	833	219	21	55	2	297
2017	686	60	184	14	944	223	17	54	5	299
2018	672	58	175	14	919	209	21	63	3	296
2019	660	50	190	14	914	208	14	71	2	295
2020	713	56	188	21	978	207	13	56	6	282
2021	675	50	198	13	936	207	7	60	8	282
2022	745	64	202	18	1029	197	25	84	5	311
2023	760	58	157	19	994	242	17	51	9	319
2024	699	51	187	12	949	230	17	73	3	323

Class of 2024 Stats

- By Employment Affiliation*

EDUCATION Class of			
Ed/cation R ceiven	Education Elevated	$\%$ Success	
1999	303	132	43.6%
2000	297	133	44.8%
2001	277	139	50.2%
2002	327	143	43.7%
2003	406	165	40.6%
2004	432	150	34.7%
2005	496	176	35.5%
2006	501	173	34.5%
2007	526	167	31.7%
2008	501	188	37.5%
2009	512	204	39.8%
2010	542	206	38.0%
2011	553	211	38.2%
2012	568	234	41.2%
2013	566	191	33.7%
2014	589	192	32.6%
2015	619	211	34.1%
2016	592	219	37.0%
2017	686	223	32.5%
2018	672	209	31.1%
2019	660	208	31.5%
2020	713	207	29.0%
2021	675	207	30.7%
2022	745	197	26.4%
2023	760	242	31.8%
2024	699		230
			32.9%

INDUSTRY			
Class of	Industry Received	Ind/astry Eq evate	$\%$ Success
1999	207		83
2000	206		103
2001	209		40.1%
2002	171	90	46.0%
2003	166	76	53.9%
2004	179	82	45.8%
2005	200	58	45.8%
2006	194	69	35.0%
2007	166	71	42.8%
2008	204	84	41.2%
2009	182	78	42.9%
2010	187	72	38.5%
2011	188	85	45.2%
2012	164	71	43.3%
2013	182	77	42.3%
2014	193	67	34.7%
2015	190	65	34.2%
2016	172	55	32.0%
2017	184	54	29.3%
2018	175	63	36.0%
2019	190	71	37.4%
2020	188	56	29.8%
2021	198	60	30.3%
2022	202	84	41.6%
2023	157	51	32.5%
2024	187	73	39.0%

$\left.$| GOVERNMENT | | | |
| :---: | :---: | :---: | :---: |
| Class of | Government
 Received | Government
 Elevated | | | $\%$ |
| :---: |
| Success | \right\rvert\, | 1999 | 28 | 13 |
| :---: | :---: | :---: |

OTHER									
Class of	Other Received	Other Elevated	$\%$ Success						
1999	26	11	42.3%	$	$	2000	17	5	29.4%
:---:	:---:	:---:	:---:						
2001	11	6	54.5%						
2002	25	11	44.0%						
2003	12	5	41.7%						
2004	19	6	31.6%						
2005	22	11	50.0%						
2006	30	12	40.0%						
2007	8	3	37.5%						
2008	17	6	35.3%						
2009	15	5	33.3%						
2010	25	14	56.0%						
2011	17	7	41.2%						
2012	12	5	41.7%						
2013	18	5	27.8%						
2014	16	11	68.8%						
2015	13	3	23.1%						
2016	14	2	14.3%						
2017	14	5	35.7%						
2018	14	3	21.4%						
2019	14	2	14.3%						
2020	21	6	28.6%						
2021	13	8	61.5%						
2022	18	5	27.8%						
2023	19	9	47.4%						
2024	12	3	25.0%						

* - Academic nominations are doubled, while industry nominations were stagnant

Class of 2024 Stats

- By Region Affiliation

Evaluated in 2023 for Elevation on 1 January 2024

Total Voting Membership:	328,953
Number of Fellows	8,426
Total Nominations Received	949
Total Nominees Elevated	323
\% success	34.0\%

Class of 2024 Stats

- Women Elevations

Year Elevated	Total Nominations Received	Women Nominations Received	Number of Women Elevated	\% Success
1999	566	21	13	61.9\%
2000	531	6	2	33.3\%
2001	525	17	5	29.4\%
2002	561	28	13	46.4\%
2003	629	32	14	43.8\%
2004	675	36	6	16.7\%
2005	778	46	17	37.0\%
2006	785	44	7	15.9\%
2007	765	48	18	37.5\%
2008	773	47	27	57.4\%
2009	757	46	19	41.3\%
2010	797	57	22	38.6\%
2011	813	52	29	55.8\%
2012	799	52	23	44.2\%
2013	831	56	19	33.9\%
2014	852	61	19	31.1\%
2015	874	59	26	44.0\%
2016	833	60	23	38.0\%
2017	944	80	28	35.0\%
2018	919	75	35	46.7\%
2019	914	71	23	32.4\%
2020	978	93	37	39.8\%
2021	936	85	39	45.8\%
2022	1029	99	35	35.3\%
2023	994	100	34	34.0\%
2024	949	85	33	38.8\%

Technical Diversity: New Contribution Characterization Matrix

- 1/3

	Evidence Domains				
	Research Publications	Peer-Reviewed Materials	Designs, Products, Processes, Algorithms, Systems, and Public/Industrial Contributions	Patents/Trade Secrets	Standards
$\underset{\substack{\text { Generic } \\ \text { Defini. } \\ \text { tion/ } \\ \text { EX. } \\ \text { amples }}}{ }$	Scholarly cited articles, refereed papers in archival journals (not survey papers), edited or authored books, papers in technical reports or other refereed publications.	Tutorials, survey papers, position papers, white papers, articles in popular press, internal reports, books about practice in the field, design review packages, and other documents describing the development/ application of products, systems, facilities, services, or software.	Contributions that demonstrate development of industrial/public systems, deployments, and innovations. Examples include building and habitation, space, utilities infrastructure, social networking. telecommunications, devices, solid state technologies.	Any type of document or legal arrangement protecting Intellectual Property.	Contributions that 1) define the framework, reference, functional or design architectures for a standard or family of standards, 2) demonstrate strong technical skills in leading a standards project or task, 3) demonstrate direct or indirect original technical content in a standard project that is adopted into a published standard or widely accepted specifications.
RE/S	$\|$Contributions in this Category normally have significant evidence from this Domain. Role of nominee in articles' authorship and impact on: - future research directions or commercialization, - i iterature (article citations), - technology (patent or standards citations), - society at-large (articles in popular press). Endorsements may provide documentation for proprietary or classified contributions.	Contributions in this Category may be supported by evidence from this Domain, but such evidence is not normally expected. Significanceimpact should NOT be penalized by the absence of evidence from this Domain.	Contributions in this Category typically do not have evidence from this Domain.	Contributions in this Category may be supported by evidence from this Domain, but such evidence is not normally expected. Significance-impact should NOT be penalized by the absence of evidence from this Domain.	Contributions in this Category typically do not have evidence from this Domain.
TI	Contributions in this Category commonly do not have evidence from this Domain.	Contributions in this Category may be supported by evidence from this Domain, but suct evidence is not normally expected. Significanceimpact should NOT be penalized by the absence of evidence from this Damain	Corrributions in this Category normally have si gnificant evidence from this Domain. Individual role of the nominee in the team/initiative (if any) - Technical contribution or innovation, risk involved, performance improvement, economic results, or other advantages - level of adoption of the	Contributions in this Categryr normally hav significicant evidenice from this Domain.	Contributions in this Category may be supported by evidence from this Domain, but such evidence is not normally expected. Significanceimpact should NOT be penalized by the absence of evidence from this Domain.

Contribution matrix 20230506

Technical Diversity: New Contribution Characterization Matrix

- 2/3

	Research Publications	Peer-Reviewed Materials	Designs, Products, Processes, Algorithms, Systems, and Public/Industrial Contributions	Patents/Trade Secrets	Standards
TL	Contributions in this Category commonly do not have evidence from this Domain.	Contributions in this Category may be supported by evidence from this Domain, but such evidence is not normally expected. Significanceimpact should NOT be penalized by the absence of evidence from this Domain.	Contributions in this Category normally have significant evidence from this Domain.	Contributions in this Category normally have significant evidence from this Domain.	
			- Role of the nominee in the technical leadership of a team, company, or industrywide effort; not solely managerial position. - Technical contribution or innovation, risk involved, performance improvement, economic results, or other advantages - Level of adoption of the technical contribution - Financial impact of the technical contribution, e.g., generated revenues, costs reduction Endorsements may provide documentation for proprietary or classified contributions.	Patents and trade secrets can have impacts similar to those in Designs, Products, Processes, Algorithms, Systems, and Public/Industrial Contributions. In this case, the role of the patent(s) in the contribution impact should be highlighted along with how Technical Leadership is demonstrated.	Contributions in this Category may be supported by evidence from this Domain, but such evidence is not normally expected. Significanceimpact should NOT be penalized by the absence of evidence from this Domain.
EDU	Contributions in this Category may be supported by evidence from this Domain, but such evidence is not normally expected. Significance/impact should NOT be penalized by the absence of evidence from this Domain.	Contributions in this Category normally have significant evidence from this Domain. Contributions may include widely used pioneering texts, laboratory experiments, papers on engineering	Contributions in this Category commonly do not have evidence from this Domain.	Contributions in this Category may be supported by evidence from this Domain, but such evidence is not normally expected. Significance/impact should NOT be penalized by the absence of evidence from this Domain.	Contributions in this Category commonly do not have evidence from this Domain.
	However, formal educational research (e.g., pedagogy, assessment, curricula) published in engineering education journals may be strongly supportive Research publications in other technical areas generally are not evidence of contribution.	Evidence of impact can include: - Adoption of textbooks, new curricula or courseware, MOOC courses, TED presentations. - Level of outreach to underrepresented populations, and/or regions.			

Technical Diversity: New Contribution Characterization Matrix

- $3 / 3$

	Research Publications	Peer-Reviewed Materials	Designs, Products, Processes, Algorithms, Systems, and Public/Industrial Contributions	Patents/Trade Secrets	Standards
					Contributions in this Category normally have significant evidence from this Domain.
STD C	Contributions in this Category commonly do not have evidence from this Domain.	Contributions in this Category may be supported by evidence from this Domain, but such evidence is not normally expected. Significance/impact should NOT be penalized by the absence of evidence from this Domain.	Contributions in this Category may be supported by evidence from this Domain, but such evidence is not normally expected. Significance/impact should NOT be penalized by the absence of evidence from this Domain.	Contributions in this Category may be supported by evidence from this Domain, but such evidence is not normally expected. Significance/impact should NOT be penalized by the absence of evidence from this Domain.	Evidence of impact for a Standards Contribution is generally more extensive than evidence in other Contribution Categories. Documentation of the contribution may use IEEE SA Contributor Collection, Internet Engineering Task Force's (IETF's) RFC, and/or other Standards Development Organizations' or alliances' publications certifying individual contributions or working group meeting minutes. Impact includes: 1) Nominee's impact on the standard, as assessed by reference and endorser testimony, related publications and patent activity, IEEE, or other awards with citations to the relevant standard, degree of incorporation of the task or project into a standard, nominee's recognized technical stature in the field and peerrecognized authority in the standard's Working Group. 2) Broader impacts of the standard, which includes functional, scientific, economic, market and societal aspects.

Sample Nomination Form

- In final preparation

Importance of Increasing the Nomination Pool Size

- All stats indicate that the most effective way to enhance technical, geographical diversity and DE\&l is to increase the nomination pool size, particularly for those underrepresented areas/regions

The Fellow Nomination Committee

- The IEEE BoD requires every S/C establish a nomination committee for fellows
- Some regions have similar organization (R8 has a fellow committee)
- Recommend each region to establish such a committee

The Fellow Nomination Committee - Synergy

- Regional fellow nomination committees will be synergistic with current section practice for senior member drives
- The Fellow Advisory and Oversight Subcommittee (FAOS) can help in both (together with the IEC)

Best Practices - Careers \& Recognition

Make IEEE the professional home for industry professionals adding value throughout their career. Enhance recognition to individuals and companies that have significant engagement and accomplishments within the scope of IEEE.

- Work with MGA for Industry Senior Member Process Improvements
E.g., Senior Member Pilots: In-Company Elevation Drive and In-country Evaluation Panel
- Work with IEEE Awards to Develop New Awards for Industry
- Work with IEEE Board of Directors and the IEEE Fellow Committee to Improve Process for Selection of Industry Fellows

TEI to TEC (Community) Transition

- IEEE TEC followed from the Transportation Electrification Initiative
- The community was approved with only 7 sponsoring societies in 2014 , operation started in January 1, 2015

TEC Council MOU Signing, TAB Series, June 15, 2023

TEI to TEC（Community）Transition

Today，IEEE TEC is 18 societies strong！

Other supporting partners

IEEE SA $\underset{\substack{\text { STANDORRS } \\ \text { ASOCAIION }}}{ }$

[^0]: * - The elevation metrics are pointing to the right direction, but clas-of-2024's female nomination number was lower

